Basic facts

  • \(logn \in o(n^\epsilon)\) for any \(\epsilon > 0\)
  • \(log^{c}n \in o(n^\epsilon)\) for any \(\epsilon > 0\)
  • \(c_1^{n} \in o(c_2^{n})\) for all \(1 \leq c_1 < c_2\)

order

- \(1/\log n\)

- \(2^{2+1/n}\)

- \(\sqrt{\log \log n}\)

- \(\log n/\log \log n\)

- \(\log n\)

- \(\Theta(\log n) = 3^{\log\log n} < 3^{\sqrt{\log n}} < 3^{\log n} = \Theta(n)\)

  • \(5(n+1/n)\)
  • \(e^{\ln n} = n\)

- \(\log (n!) = n \log n\)

- \(n \log ^3 n\)

- \(4n^{3/2}\)

- \(4^{\log n} = n^2\)

- \(n^2 \log n\)

- \(n^3\)

- \(n^{100}\)

- \(3^{\sqrt{n}}\)

- \(4^{n} = 2^{2n}\)

- \(n!\)

- \(2^{n^2 \log n} = n^{n^2}\)

  • \(2^{2^n}\)